Structure and dynamics of the pore of inwardly rectifying K(ATP) channels.

نویسندگان

  • G Loussouarn
  • E N Makhina
  • T Rose
  • C G Nichols
چکیده

Inwardly rectifying K(+) currents are generated by a complex of four Kir (Kir1-6) subunits. Pore properties are conferred by the second transmembrane domain (M2) of each subunit. Using cadmium ions as a cysteine-interacting probe, we examined the accessibility of substituted cysteines in M2 of the Kir6.2 subunit of inwardly rectifying K(ATP) channels. The ability of Cd(2+) ions to inhibit channels was used as the estimate of accessibility. The distribution of Cd(2+) accessibility is consistent with an alpha-helical structure of M2. The apparent surface of reactivity is broad, and the most reactive residues correspond to the solvent-accessible residues in the bacterial KcsA channel crystal structure. In several mutants, single channel measurements indicated that inhibition occurred by a single transition from the open state to a zero-conductance state. Analysis of currents expressed from mixtures of control and L164C mutant subunits indicated that at least three cysteines are required for coordination of the Cd(2+) ion. Application of phosphatidylinositol 4,5-diphosphate to inside-out membrane patches stabilized the open state of all mutants and also reduced cadmium sensitivity. Moreover, the Cd(2+) sensitivity of several mutants was greatly reduced in the presence of inhibitory ATP concentrations. Taken together, these results are consistent with state-dependent accessibility of single Cd(2+) ions to coordination sites within a relatively narrow inner vestibule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input

Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...

متن کامل

Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input

Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...

متن کامل

Inwardly rectifying potassium channels: their structure, function, and physiological roles.

Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by ...

متن کامل

Association and Stoichiometry of KATP Channel Subunits

ATP-sensitive potassium channels (K(ATP) channels) are heteromultimers of sulfonylurea receptors (SUR) and inwardly rectifying potassium channel subunits (K(IR)6.x) with a (SUR-K(IR)6.x)4 stoichiometry. Association is specific for K(IR)6.x and affects receptor glycosylation and cophotolabeling of K(IR)6.x by 125I-azidoglibenclamide. Association produces digitonin stable complexes with an estima...

متن کامل

The therapeutic agents that target ATP-sensitive potassium channels.

ATP-sensitive potassium (K(ATP)) channels are a major drug target for the treatment of type-2 diabetes. K(ATP) channels are ubiquitously expressed and link the metabolic state to electrical excitability. In pancreatic β-cells, K(ATP) channels are crucial in the regulation of glucose-induced insulin secretion. Also, K(ATP) channels are involved in the protection against neuronal seizures and isc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 2  شماره 

صفحات  -

تاریخ انتشار 2000